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ABSTRACT

A hybrid two-stage machine learning architecture that addresses the problem of ex-
cessive false positives (false alarms) in solar flare prediction systems is investigated.
The first stage is a convolutional neural network (CNN) model based on the VGG-16
architecture that extracts features from a temporal stack of consecutive Solar Dynamics
Observatory (SDO) Helioseismic and Magnetic Imager (HMI) magnetogram images to
produce a flaring probability. The probability of flaring is added to a feature vector
derived from the magnetograms to train an extremely randomized trees (ERT) model
in the second stage to produce a binary deterministic prediction (flare/no flare) in a
12-hour forecast window. To tune the hyperparameters of the architecture a new eval-
uation metric is introduced, the “scaled True Skill Statistic”. It specifically addresses
the large discrepancy between the true positive rate and the false positive rate in the
highly unbalanced solar flare event training datasets. Through hyperparameter tun-
ing to maximize this new metric, our two-stage architecture drastically reduces false
positives by ≈ 48% without significantly affecting the true positives (reduction by ≈
12%), when compared with predictions from the first stage CNN alone. This, in turn,
improves various traditional binary classification metrics sensitive to false positives such
as the precision, F1 and the Heidke Skill Score. The end result is a more robust 12-hour
flare prediction system that could be combined with current operational flare forecast-
ing methods. Additionally, using the ERT-based feature ranking mechanism, we show
that the CNN output probability is highly ranked in terms of flare prediction relevance.
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1. INTRODUCTION

Solar flares are the electromagnetic radiation outbursts accompanying Solar Magnetic Eruptions
(SMEs) in the outer solar atmosphere (Fletcher et al. 2011). The resulting X-ray and EUV radiation
ionizes Earth’s upper atmosphere and can cause radio, radar, and Global Navigation Satellite System
(GNSS) signal interference on the sunlit side of the Earth. In addition to flares, SMEs can also result
in “Coronal Mass Ejections” (CMEs), large magnetic plasma clouds launched into interplanetary
space at speeds on the order of 103 km s−1 (Webb & Howard 2012). If CMEs impact the Earth’s
magnetosphere, they can trigger geomagnetic storms which can produce a variety of impacts including
large-scale inner magnetospheric currents, global ionospheric disturbances, increased drag on satellites
in Low-Earth orbit, and, in more severe cases, geoelectric fields that can destabilize or damage electric
power transmission grids (Lucas et al. 2020). SMEs and the shock waves propagating in front of the
associated CMEs can also accelerate charged particles to relativistic energies, resulting in “radiation
storms” that propagate along the heliospheric magnetic field (Reames 2013) to endanger astronauts in
space and potentially damage spacecraft avionics. Historically, solar flares were the first phenomenon
discovered to be associated with SMEs (e.g., Carrington 1859) and the electromagnetic radiation from
flares is the first indication we receive of an eruption on the Sun. Indeed, the size of SMEs is still
generally described by the intensity of the X-ray irradiance from the associated flare. Thus while the
ultimate goal is to predict SMEs, we follow common usage and apply the term “solar flare prediction”
to describe the goal of our investigation.

Currently, operational solar flare prediction is accomplished using manual classification of sunspot
active region (AR) shape, size, and complexity in visible-light images of the solar photosphere. The
classifications are then associated with historical 24-, 48-, and 72-hour probabilities of producing X-
ray flares of a given magnitude via look-up tables (McIntosh 1990) and modified by human forecasters
to take into account factors such as emerging flux or imminent collisions with other ARs. This
subjective and largely “climatological” forecasting method has demonstrated only limited success
in predicting SMEs during the 3-day forecast windows (Sharpe & Murray 2017; Crown 2012). For
several decades, efforts have been made to automate the flare prediction process with computer-based
classification and prediction systems in order to improve upon the current process. In recent years,
these efforts have taken advantage of the rapid innovation in “machine learning” (ML) techniques
developed for commercial image classification purposes. Qahwaji & Colak (2007) review some of the
early attempts to employ machine learning to the solar flare prediction problem, and a recent series
of papers compares the prediction skill of the manual method and several current automated models
(Barnes et al. 2016; Leka et al. 2019a,b; Park et al. 2020).

The majority of automated flare prediction systems rely primarily on the properties of sunspot ARs
derived from measurements of the one-dimensional line-of-sight (LOS or “longitudinal”) component
of the magnetic field in the solar photosphere. This is primarily because there are now almost 30 years
of space-based full-disk photospheric magnetic field images (“magnetograms”) taken on cadences of
order 10-min or less that provide continuous, consistent, and high quality data. However, the primary
magnetic reconnection that triggers SMEs does not take place in the photosphere (e.g., Simões et al.



3

2015), and with few exceptions (e.g., Sudol & Harvey 2005) photospheric magnetograms show no
significant changes before and after SMEs. Ideally one would use magnetic field measurements in
the upper solar atmosphere (the chromosphere and corona) to better predict eruption triggering, but
there are not yet any reliably available, consistently high-quality, magnetic field measurements in the
upper solar atmosphere. Thus solar physicists have concentrated on searching for physical properties
derivable from photospheric magnetograms that correlate to a high probability of imminent eruption
(e.g., Schrijver 2016; Kusano et al. 2020). Recently, the full-disk vector (i.e., three-dimensional)
magnetograms from NASA’s Solar Dynamics Observatory (SDO, Chamberlin et al. 2012) Helioseismic
and Magnetic Imager (HMI, Scherrer et al. 2012) instrument have enabled the creation of a large
database of derived AR magnetic field quantities called the SHARP parameters (Bobra et al. 2014a).
Since 2015, many ML solar flare prediction systems have used the SHARP parameters, or a subset of
parameters, as the primary feature vector input to supervised learning architectures (e.g., Bobra &
Couvidat 2015; Bobra & Ilonidis 2016; Florios et al. 2018; Chen et al. 2019; Deshmukh et al. 2020).
The SHARP AR image cutout and feature set has recently been expanded to include data from the
predecessor instrument to SDO/HMI, the SOHO/Michelson Doppler Imager (MDI; Scherrer et al.
1995), to create the SMARPs dataset (Bobra et al. 2021).

A common challenge for all ML-based solar flare prediction models is the relative dearth of large,
space-weather important (defined as X-ray class M1 or above on the NOAA radio black-out scale1)
flares on which to train the models. Large SMEs and their associated large flares are relatively rare
compared to the many smaller flares that occur in any given AR over the course of its evolution. Thus
for any given sequence of AR magnetograms, there will be many more “non-flare” magnetograms, i.e,
magnetograms that do not have an M1 or larger flare within the next k hours, where k is the forecast-
ing window (typically 24, 48, or 72 hours), than there are “flare” labelled magnetograms. This fact,
combined with the fact mentioned above that photospheric magnetograms show only minor changes
before and after flares of any size implies that ML models will naturally train to predict no flaring,
achieving high accuracy scores at the expense of sensitivity2. This training set imbalance can be
addressed in several ways. Balancing training sets by removing non-flare examples (e.g., Chen et al.
2019) improves sensitivity, but such a model is likely to be difficult to optimize for operational space
weather forecasting where the incoming real-time data stream is naturally extremely unbalanced.
Other studies have addressed training set imbalance using oversampling of flare magnetograms dur-
ing training (e.g., Zheng et al. 2021) or data augmentation: creating artificial flare magnetograms
using image processing techniques such as affine transformations of real flare magnetograms or em-
ploying Generative Adversarial Networks (GANs; Zheng et al. 2019). Data augmentation has been
successful in improving the training of ML image classification models (e.g., Wang et al. 2017), but
our experiments with augmentation via affine transformation of flare magnetograms did not show
improved skill over non-augmented training datasets (see Sec. 4). Another method of addressing
training set imbalance that preserves the original dataset is to overweight the loss function used to
train the network weights to penalize false negatives (missed flare detection) more severely than false
positives. Models trained in this way can achieve high skill metrics in testing, but tend to overpredict
flares, resulting in unacceptably high False Alarm Rates (FARs).

1 See https://www.swpc.noaa.gov/noaa-scales-explanation for definitions of the NOAA space weather scales.
2 See Jolliffe & Stephenson (2012) for formal definitions of these binary categorical forecasting metrics.

https://www.swpc.noaa.gov/noaa-scales-explanation
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We have recently undertaken the development of ML models for prediction of solar flares based on
Convolutional Neural Network (CNN) architectures that analyze spatial and, when used in recurrent
architectures, temporal evolution of magnetic structure prior to flaring. Here we present a prelimi-
nary CNN model that analyzes SDO/HMI radial field (“Br”) magnetograms from the SHARP AR
cutout series to produce a short-term (12-hour) probabilistic flare prediction. We achieve temporal
correlation analysis by feeding the CNN several magnetograms in a temporal sequence as a single
“multi-layer” input. This “temporal stacking” CNN input has been found to be more successful
than the more traditional recurrent Long Short-Term Memory architecture models (Hochreiter &
Schmidhuber 1997). We use loss function weighting to compensate for training set imbalance and
tune hyperparameters using a new “scaled True Skill Statistic” (TSSscaled) metric to optimize the
flare/no-flare threshold of the CNN model. We address the relatively high FAR by developing a
hybrid architecture that employs an additional extremely randomized trees (ERT) model. The ERT
uses the flaring probability for a given magnetogram time series from the CNN stage as an additional
feature added to derived features including the SHARPs parameters from the given set.

2. DATA

For this model, we use vector magnetogram image cut-outs observed by the Helioseismic and
Magnetic Imager (HMI) instrument on-board the Solar Dynamics Observatory telescope Pesnell
et al. (2012). These cut-outs — called as Spaceweather HMI Active Region Patch or SHARPs —
have been tracking active regions on the surface of the Sun visible to the SDO since 2010 (Bobra
et al. 2014b). For our dataset, we choose all magnetogram images, in the Cylindrical Equal Area
(CEA) projection, across all recorded active regions from 2010 to 2017, at a cadence of 3 hours. This
gives us a total of 157095 images. Each image includes metadata that contains features associated
with the magnetogram including physics-based attributes extracted from the raw magnetic field data
and deemed important by solar physicists. X-ray irradiance data from the NOAA Geostationary
Observational Environmental Satellite (GOES) provide the location, intensity, and the onset, peak
and termination times of recorded flares. Solar flares, based on the logarithm of the magnitude
of their 1–8 Å X-ray irradiance, are classified into five major categories — A, B, C, M and X (in
increasing order of magnitude). The first three classes usually are considered as minor flares, while
the remaining two are major flares, and therefore of higher importance. Combining the SHARPs
metadata and the GOES flare data, we can determine if a magnetogram produced a major flare
(M- or X-class) in the next k hours. Since we are interested in short-term predictions that could
generate solar flare warnings we set k = 12 for this study. Each magnetogram image is labeled as 1
if it produced an M/X flare within the following 12 hours, 0 otherwise. Since major flares are rare,
this labeling results in an extremely imbalanced dataset. 1561 (≈1%) of the total magnetograms are
labeled positive (flaring), and the rest of the 99% are labeled negative. Such a highly imbalanced
dataset poses a challenge for training ML models.

Existing CNN flare prediction models (e.g., Huang et al. 2018; Park et al. 2018; Zheng et al.
2019; Li et al. 2020; Abed et al. 2021; Zheng et al. 2021) use balanced datasets for training and
evaluating the models. The balanced datasets in these works are either generated by undersampling
the majority class (lower intensity or no-flares) or oversampling the minority class (higher intensity
flares) for both the training and testing sets. As mentioned, data augmentation is used successfully in
image classification research to balance datasets. We applied this technique to augment the minority
class of the training set by applying simple rotation and polarity swapping to generate new flaring
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magnetograms. This reduced the dataset imbalance to 1:10. However we found that our model
showed no improvement in flare prediction skill as measured by, e.g., the TSS of the test set. As
a result, we decided not to include data augmentation in our experiments. To our knowledge the
only ML flare prediction study to train on imbalanced data was Huang et al. (2018), and we observe
that their model suffers from a high false positive rate similar to our CNN implementation described
below.

The magnetogram image dataset is not directly usable as-is with deep learning models. Each image
cut-out is variable in size, whereas the convolutional neural network we model requires fixed input
dimensions across the entire dataset. There are multiple ways to transform all images to a standard
size; in this work, we choose to perform affine transformations, which is a linear transformation that
preserves lines and parallelism in an image, but not distances. We use the standard OpenCV package
to convert all SHARPS radial magnetograms to a 128 × 128 pixel format. We find that these are
the smallest set of dimensions that require less memory and processing time without affecting the
quality of predictions.

To train and evaluate our architecture, we split our dataset into 70% training, 10% validation and
20% testing sets. The splitting is based on the active region number, so that all images of any given
active region are present in the same set. The splitting is randomized 10 times using 10 random
seeds; the model is trained, tuned and tested one randomized dataset at a time, and the statistics of
the performance score reported across these 10 trials. With this arrangement, the total number of
samples in the testing set is approximately 24000 samples, the positive samples varying from 137–347
and negative samples between 22187–24532. The positive and negative samples for the individual
splits are shown in Table 6 in the appendix.

2.1. Feature sets

We use the SDO HMI radial field (Br) magnetograms as input to a CNN model, as well as a source
to extract numerical subsets of features that are used to train an extremely randomized trees (ERT)
model, as described in Section 3. Here, we discuss the two types of numerical features extracted from
the magnetogram data.

Physics-based Features

The first subset of features are the standard attributes of an active region cut-out available in the
metadata of the SDO/HMI SHARPs dataset. These attributes, such as the area, total magnetic
flux, magnetic shear, total vertical current, current helicity, etc., are predominantly derived from the
spatial and/or extensive properties of the vector magnetic field in a given magnetogram image. A
complete list of these features is available in Table 1.

Shape-based Features

To complement the physics-based features, we also include some shape-based features extracted
using topological data analysis (TDA), as proposed in Deshmukh et al. (2020). TDA is an approach to
characterize the shape of data in terms of its homology, i.e. by counting the j−dimensional holes of an
object. The counts of these j-dimensional holes are defined as Betti numbers β = {β0, β1, β2, ...βd−1},
where d is the dimension of the manifold that the data lies in. β0 counts the number of connected
components in an object, β1 the number of circular 2-dimensional loops, β2 the total number of
3-dimensional voids, and so on. Since we are dealing with a 2-dimensional image for extracting the
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Acronym Description Units

LAT FWT Latitude of the flux-weighted center of active pixels degrees

LON FWT Longitude of the flux-weighted center of active pixels degrees

AREA ACR Line-of-sight field active pixel area micro-hemispheres

USFLUX Total unsigned flux Mx

MEANGAM Mean inclination angle, gamma degrees

MEANGBT Mean value of the total field gradient G/Mm

MEANGBZ Mean value of the vertical field gradient G/Mm

MEANGBH Mean value of the horizontal field gradient G/Mm

MEANJZD Mean vertical current density mA/m2

TOTUSJZ Total unsigned vertical current A

MEANALP Total twist parameter, alpha 1/Mm

MEANJZH Mean current helicity G2/m

TOTUSJH Total unsigned current helicity G2/m

ABSNJZH Absolute value of the net current helicity G2/m

SAVNCPP Sum of the absolute value of the net currents per polarity A

MEANPOT Mean photospheric excess magnetic energy density ergs/cm3

TOTPOT Total photospheric magnetic energy density ergs/cm3

MEANSHR Mean shear angle (measured using Btotal) degrees

SHRGT45 Percentage of pixels with a mean shear angle greater than 45 degrees percent

R VALUE Sum of flux near polarity inversion line G

NACR The number of strong LOS magnetic field pixels in the patch N/A

SIZE ACR Projected area of active pixels on image micro-hemispheres

SIZE Projected area of patch on image micro-hemispheres

Table 1. The SHARPs feature set, as available in the metadata of the SDO HMI dataset. Abbreviations:
Mx is Maxwells, G is Gauss, Mm is Megameters, and A is Amperes. From Bobra et al. (2014b).

features, our Betti numbers are restricted to {β0, β1}. As in Deshmukh et al. (2020), we choose β1
for our topology-based feature set.

On an image, TDA counts holes by first performing sub-level thresholding, i.e. keeping magnetic
flux pixels below a chosen threshold and discarding the rest. The selected pixels connect to each other
forming connected components (β0) and loops with empty space between them (β1). Repeating this
process for 7 thresholds on the positive and negative flux structures on a magnetogram separately,
we obtain the β1 counts for each of the thresholds. We choose equally spaced magnitudes of magnetic
flux thresholds for the positive and negative fluxes,

thresholds = {20G, 420G, 820G, 1220G, 1620G, 2020G, 2420G}.

This gives us a total of 14 TDA-based features, denoted by flux pos t and flux neg t, where
t ∈ thresholds.

3. A TWO-STAGE MACHINE LEARNING PIPELINE
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In this study, our primary machine learning model is a CNN. CNNs are an effective tool for ex-
tracting patterns from images which can subsequently be used in training the model to automatically
classify the image content. This is advantageous as a way to avoid manual feature engineering of the
dataset, or alternatively as a way to complement these manually engineered features. Because the
pattern extraction is statistical in nature and not easily attributed to any particular heuristic, this
process is sometimes referred to as “deep learning.” Here we aim to combine the predictive power of
the manually engineered features (SHARPs and topological) of the magnetograms with the features
automatically extracted by a CNN model.

To do so, we propose a two-stage model architecture. The first stage implements a CNN architecture
that is trained on the magnetogram images directly and classifies a flaring probability as the output.
This flaring probability is then used as a feature along with the manually engineered features to train
an extremely randomized trees (ERT) architecture. We choose this architecture on account of its
design simplicity in being able to separate the prediction capabilities of the CNN features and the
engineered features. An additional benefit of using the ERT architecture is its ability to rank the
relevance of various features in terms of predicting flares. We discuss the two stages below.

3.1. Stage I: Convolutional Neural Network

The first stage of the model is a CNN adapted from the VGG-16 model - a deep CNN with 13
2-D convolution layers and 4 dense layers designed to classify images into 1000 pre-defined categories
(Simonyan & Zisserman 2014). The input sample to our model is not a single magnetogram image,
but a temporal stack of 4 consecutive magnetograms separated by a cadence of 3 hours. The input
layer and the output layer of the VGG-16 model are modified to have 4 channels instead of 3, and two
output nodes instead of 1000, respectively. The two output nodes respectively produce the probability
of flaring and non-flaring in the next k hours for a given input sample, where k is the forecast window,
which can be distinct from the 12-hour temporal stack we provide as input to the model. For this
study however we set k = 12 to match the forecast window with the temporal span of the input
data. Probabilistic output is desirable from a forecasting point of view. However, for comparison
to most other automated solar flare prediction models that produce categorical flare/no-flare event
predictions, we convert the probabilistic output into a categorical output by defining an optimal flare
event threshold. Optimizing the threshold is accomplished using validation data, as described in
Section 3.4. Some methods choose an arbitrary threshold of 0.5 to generate the categorical prediction
(Leka et al. 2019a) while others use an automatically determined threshold based on optimizing the
Receiver Operating Characteristic (ROC, Jolliffe & Stephenson 2012). Interestingly, this coincides
with the threshold that maximizes the TSS score.

Four variations on the model architecture and the input data format were investigated:

1. C1: Using an input stack consisting of the [Br, Bφ, Bθ] components of the vector magnetogram
and setting the number of input channels of the VGG-16 model to 3.

2. C2 Using a single component Br at a single time as the input data per sample, setting the
number of input channels of the VGG-16 model to 1.

3. C3: Using the temporal stacked configuration [Br,t, Br,t−3, Br,t−6, Br,t−9] as the input data per
sample (as described above), setting the number of input channels of the VGG-16 model to
1. Each component in the temporal stack is operated on by the convolutions and dense layers
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individually to generate 4 feature representations. An LSTM layer is introduced before the
output layer to process the sequence of the 4 representations.

4. C4: Using the temporal stacked configuration [Br,t, Br,t−3, Br,t−6, Br,t−9] as the input data per
sample (as described above), setting the number of input channels of the VGG-16 model to
4. All components of the temporal stack are treated as individual channels in the input layer.
Such a setup leads to a single feature representation at the final layer that is acted upon by the
softmax function, as opposed to the four representations generated from the temporal stack in
C3.

All four configurations were modeled in Pytorch. We use a weighted focal loss function (α = 1
11

,
γ = 2) (Lin et al. 2017) with an additional L2 regularization weight decay factor β = 0.001. The
weights of the models are updated using an Adagrad optimizer (Duchi et al. 2011), using an initial
learning rate of 0.0001 and a batch size of 64. A cosine annealing learning rate scheduler is used for
adjusting the learning rate through the training. The evaluation of each of these configurations (after
hyperparameter tuning discussed below), is presented in the appendix in Table 5. Summarizing the
results, we find that the Br-only configuration C2 performs slightly worse than the vector magne-
togram configuration C1. However, the temporal stacking configuration C4 performs very similar
to C1. What this tells us is that from the perspective of the CNN, the Br channel is sufficient for
predicting flares and the other two components are superfluous. Additionally, comparing the two
temporal stacking configurations, the LSTM model in C3 does worse than using the temporal stack
as channels as in C4.

3.2. Stage II: Extremely Randomized Trees (ERT) model

While there have been CNN implementations proposed in recent years, the novelty in our approach
is the combined use of the features extracted through convolutions together with engineered features
based on the physics and the shape of the magnetogram. We generate a feature set that concatenates
the output of the VGG-16 model (the probability of a flare) with these engineered features. These
features are extracted from two main sources. The first is a set of physics-based features — called
SHARPs — that are available in the SHARPs HMI data set as metadata (Bobra et al. 2014a).
The second source is a set of features extracted using topological data analysis (TDA) (Zomorodian
2011), as applied to sunspot magnetograms in Deshmukh et al. (2020); Deshmukh et al. (2021).
Concatenating the VGG-16 probability output, 20 SHARPs features and 14 TDA-based features, we
have a complete feature set of 35 features which combines information from deep learning-based and
feature engineered approaches.

We use this feature set to train an extremely randomized trees (ERT) model (Geurts et al. 2006)
in the second stage. An ERT is a tree-based model built as a hierarchical structure of nodes that
successively perform the operation of separating the dataset into two classes. The entire dataset is
“fed” to the root of this tree and undergoes a sequence of splitting operations at the intermediate
nodes. At each node, the incoming dataset is separated into two subsets — termed “left” and “right”
— based on a feature thresholding criterion. That is, a random subset of m features is chosen from
the entire candidate feature set, together with m random splits (one for each feature). The quality
of each split at node n is sn, determined by computing the reduction in some “impurity” metric of
the dataset given by —

∆i(sn, n) = i(n)− pL × i(nL)− pR × i(nR). (1)
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Figure 1. Our two-stage model for solar flare prediction. The input is a temporal stack of Br magnetograms
from SDO/HMI which is both fed to a custom CNN model and analyzed for feature vectors. The CNN model
outputs the probability of flaring with the 12-hour forecast window and this probability is combined with
the feature vectors to create a single feature vector input to the ERT model. The output of the ERT model
is a binary event prediction.

Here, the impurity function i(n) quantifies the degree of class intermixing for a given dataset input
into node n. Correspondingly, the impurities for the left and the right subsets from the split are
denoted by i(nL) and i(nR) respectively. pL = NnL

/Nn and pR = NnR
/Nt represent the proportions

of the dataset arriving at node n of size Nn split into the left (size NnL
) subset and right subset (size

NnR
) respectively. Of the m splits, the one that maximizes ∆i(sn, n) is chosen. For the definition

of impurity, we choose the standard Gini impurity index, as described in Raileanu & Stoffel (2004).
Whether the two subsets are further subject to splitting at the next level is determined by an
important hyperparameter in the training process known as the min impurity decrease index,
denoted by ∆imin. A dataset at any point in the tree is split further using an additional node if,

∆i(st, t) ≥ ∆imin.

In the context of this problem, ∆imin determines how the model balances between the true positive
rate (TPR) and false positive rate (FPR, also called the False Alarm Rate). A low value of ∆imin
results in low FPR but a low TPR as well, whereas a high ∆imin raises the TPR at the cost of
increased FPR as well. Just as with the threshold in the CNN stage, we tune this hyperparameter
using a validation set (discussed in Section 3.4). The two-stage model is summarized in Fig. 1.

3.3. Metrics

With a categorical forecast (flare/no-flare), we can compute the standard confusion matrix on
the testing set predictions: true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). Using the entries of the confusion matrix, we study various metrics defined in Table 2.
Most of these metrics are standard to flare prediction literature. A popular one among these is the
true skill statistic score (TSS), equal to the difference TPR - FPR. TSS provides some utility to
this problem because it is insensitive to dataset imbalance, and is a better indicator of the model

songyongliang
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performance than the standard accuracy (Barnes et al. 2016; Bobra & Couvidat 2015). However,
optimizing the TSS score often leads to an overforecasting model; models optimized on TSS tend to
improve TPR at the cost of also slightly increasing the FPR. A slight increase in FPR can lead to a
significant increase in the absolute false positives FP, since the number of negative samples is huge,
thereby impacting other metrics like precision or F1, that are sensitive to FP.

Metric Formula

Recall (TPR) TP
TP + FN

False Positive/Alarm Rate (FPR) FP
FP + TN

Accuracy TP + TN
TP + TN + FP + FN

Precision TP
TP + FP

True Skill Statistic (TSS) TP
TP + FN −

FP
FP + TN

Heidke Skill Score (HSS) TP×TN−FP×FN
(TP + FP)(FP + TN) + (TP + FN)(FN + TN)

Table 2. Metrics used for evaluating the binary forecasting models.

To address this problem, we define a new metric for model optimization, TSSscaled, given by

TSSscaled = TPR− TPRmax

FPRmax

FPR, (2)

where TPRmax and FPRmax are the maximum values of the two metrics determined over the range
of model hyperparameters. The scaling factor TPRmax

FPRmax
applied to the FPR term is a quantity greater

than 1 for our hyperparameter choices that penalizes increase in false positives more than the TSS
score. We therefore choose TSSscaled for selecting the model hyperparameters, which, as we will show
in the next section provides a better balance between TPR and FPR.

3.4. Hyperparameter Tuning

Hyperparameter tuning is essential for optimizing machine leaning model performance. For both
models, we identify the hyperparameter that significantly affects the TPR-FPR balance. In case of
the first stage CNN-only model, it is the threshold for converting probabilistic to categorical forecast.
In case of the second stage ERT model, it is the min impurity decrease index parameter.

The process for choosing the optimal hyperparameters is performed individually on the CNN and
ERT. The first step is to choose a set of suitable hyperparameter values to sample from in each
case. The CNN stage is trained only once, determining the TSSscaled score by simply choosing
different thresholds on the validation set. The ERT model is trained with all values of the chosen
hyperparameter set.The setting that maximizes the chosen metric on the validation set — in this
case, TSSscaled — is then determined.

This process is applied to both stages across the 10 randomly selected train-validation-testing set
combinations. For the CNN-only stage, the tuning is performed over a range of eight even spaced
thresholds in the interval [0.2, 0.9]. In the second stage, six values of min impurity decrease index

are chosen for tuning — [3 × 10−5, 6 × 10−5, 1.2 × 10−4, 2.5 × 10−4, 5 × 10−4, 1 × 10−3] The re-
sults are shown in Fig. 2. It is clear that for the majority of the dataset combinations, a sin-
gle hyperparameter maximizes TSSscaled. For stage 1, this is a threshold of 0.4, for the second,
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(a) Stage-1 CNN-only (b) Stage-2 CNN+ERT

Figure 2. Hyperparameter tuning across multiple seeds for both stages of the hybrid flare prediction model.
In both stages, hyperparameters that optimize the TSSscaled metric are determined.

min impurity decrease index= 0.00012. Performing a similar optimization study for the TSS score
instead yields an optimal threshold of 0.3 for stage 1 and an optimal min impurity decrease index=
0.001. Note that if the CNN+ERT model were tuned with this latter value of 0.001, all 10 trials
would have converged onto a TSSscaled score of zero. The TPR and FPR statistics on the validation
set across the 10 trials for each of the these hyperparameter choices are shown in Table 3. It can
be seen that optimizing over TSSscaled over optimizing TSS on average reduces FPR by a factor of
approximately 2-4 while only reducing the TPR by a factor of approximately 1.2-1.4. The TSSscaled

optimized hyperparameters offer a more favorable result in terms of the TPR-FPR balance. For our
models, we therefore use the hyperparameters that optimize TSSscaled on the validation set.

Model stage Optimized metric Optimal hyperparameter TPR FPR

CNN-only TSS threshold = 0.3 0.90± 0.05 0.13± 0.02

CNN-only TSSscaled threshold = 0.4 0.75± 0.09 0.06± 0.01

CNN+ERT TSS min impurity decrease index = 0.001 0.90± 0.05 0.12± 0.02

CNN+ERT TSSscaled min impurity decrease index = 0.00012 0.65± 0.11 0.03± 0.01

Table 3. The mean and standard deviation values of TPR and FPR on the validation set (10% of the
full dataset or ≈ 15, 000 samples) for the two stage models using TSS and TSSscaled metrics for optimizing
hyperparameters. The statistics are generated over 10 trials with 10 different random dataset splits.

4. RESULTS

For the 10 dataset splits, we separately determine the confusion matrix on the test set for each
of the two stages, and calculate the metrics discussed in Table 2. The optimal hyperparameters for
each stage, as derived in Section 3.4, are used. We then evaluate the change in these various metrics
between stages, i.e. using only the CNN and then appending the ERT to it. The raw values of six
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metrics is shown in Fig. 3 in the form of box plots. Note also that TP and FP are presented in
this plot instead of TPR and FPR. Looking at these two metrics in box plots Fig. 3(a) and (b), we
observe that TP is slightly decreased with the use of the ERT architecture. On the other hand the FP
values decrease significantly, thus reducing the over-forecasting nature of the model. It should also be
observed that the FP box plots for the CNN-Only and CNN+ERT architecture are non-overlapping,
demonstrating that the improvement is significant. The changes in TP and FP scores impact other
metrics both positively and negatively. For example, the precision and the HSS score in Fig. 3(c)
and (f) respectively are overall better for the CNN+ERT architecture, whereas the recall and TSS
are overall slightly worse due to the dominance of TP in calculating these metrics. (Fig. 3(d) and
(e)).

Metric % average change in metric between stages

Recall (TPR) -12 ± 6.9

False Positive/Alarm Rate (FPR) -48 ± 12.4

Accuracy 3 ± 0.7

Precision 69 ± 16.7

TSS -8 ± 7.0

HSS 56 ± 35.7

Table 4. Percent change in metrics of using the 2-stage model (CNN+ERT) over using a single stage
CNN-only model, along with the standard deviation, summarized over 10 dataset experiments.

Table 4 shows the average percentage improvement across all the dataset splits, which summarizes
the results in Fig. 3. The true positive rate is decreased (on average) by 12%, while the false positive
rate improves by 48%. This impacts the derived metrics in different ways. For example, the more
popular TSS metric is decreased by an average of 8%, and similarly the recall is decreased by an
average of 12%. On the other hand, we see very large improvements in precision (≈69%) and HSS
(≈56%). Thus, our two-stage model provides a prediction that can be more reliably incorporated
into solar flare forecasting processes. We stress that operational flare forecasts are never dependent
on a single model – they always incorporate multiple factors including climatological predictions,
model predictions, and changing conditions evaluated in real time by forecasters.

4.1. Feature Ranking

It is useful to know which features in our feature set play an important role in the model prediction.
We use the Gini impurity index extracted from the ERT model to determine how much each feature is
successful in separating the positive and negative labels across all the nodes of the tree. The relative
rankings are shown in Fig. 4. While there are other ways for performing multivariate feature ranking,
e.g. the linear discriminant analysis from Leka & Barnes (2007), extending our ERT prediction model
to also perform feature ranking makes sense.

Fig. 4 shows that the CNN output probability cnn prob ranks highest amongst all the features.
In the top 10 features there is a mix of topological and physics-based features. The R VALUE feature
from the HMI feature-set ranks highly (second only to the CNN probability), since this corresponds
to the magnetic flux from the neutral line where magnetic reconnection (and thus SMEs) occur. With



13

(a) TP (b) FP

(c) Precision (d) Recall

(e) TSS (f) HSS

Figure 3. Performance comparison between CNN-Only and CNN+ERT models across six different metrics
on the testing set. For each metric boxplot, the 10 dots shown represent the individual score of each of the
10 dataset splits.
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Figure 4. Feature ranking using the Gini impurity index from the ERT model.

regard to the topological feature set, the β1 counts in the range of 800G to 1600G are shown to be
important.

5. CONCLUSIONS

Extreme dataset imbalance is a significant challenge for machine learning-based solar flare predic-
tion. To address this problem, various methodologies have been adopted in previous literature. A
common approach is to balance the dataset, either through oversampling the minority class or under-
sampling the majority class. Some approaches weight the loss function of the model that penalizes
mispredictions on the minority class more in relation to the majority class. Finally, many methods
optimize models to maximize metrics such as the True Skill Statistic (TSS). This study presents a
systematic evaluation of some of these approaches, uncovering their limitations and proposing mod-
eling and evaluation strategies for overcoming them. To that end, we have proposed a two-staged
machine learning model for predicting M1.0+ class flares in the next 12 hours. The first stage is
a state-of-the-art VGG-16 convolutional neural network model that outputs a flaring probability
by extracting features from raw magnetogram images. The output of this model is then used as
input to an extremely randomized trees model in the second stage, along with various engineered
physics-based and topological features extracted from the magnetogram.

Our first important contribution is the impact evaluation of various dataset manipulations and
modeling strategies on the performance of a CNN-only model (i.e. the first stage VGG-16 model).
Primary among the dataset manipulations is the dataset augmentation. We find that performing
augmentation of the minority class (using standard rotation and polarity swapping) on the dataset
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for this model yields no improvement in predictive skill. It should be noted that, unlike some studies
which incorrectly augment both training and testing sets, we perform augmentation only on the
training set. In addition, we also study the predictive performance of using a temporal sequence of
the Br component (with proper modeling) as opposed to all three components — Br, Bθ and Bφ —
of the vector magnetogram image to train the VGG-16 model. Our findings show that using the
Br sequence is just as predictive as the full stack, indicating the redundancy of other components.
Finally, when modeling on a temporal sequence of image data, we show that using an LSTM layer
at the end of the VGG-16 model performs worse than using the sequence as channels to the VGG-16
input layer.

The second focus of this paper is the use of binary categorization metrics for evaluating flare
prediction models. While the standard TSS metric is often used, tuning hyperparameters to optimize
on the TSS metric alone can lead to a model that highly over-forecasts, i.e. one with many false
positives. To address this, we propose a modified alternative metric — TSSscaled, which reduces the
false positive rate in optimized models.

Our third major contribution from this paper is the use of the ERT model in the second stage
that trains on a feature set that includes the output probability from the VGG-16 model from the
first stage together with various engineered features. This two-stage design offers various advantages.
First, this combines the prediction power of the automatically learned features from magnetogram
images by the VGG-16 with the engineered features shown to be skillful in flare prediction in earlier
studies. This can be considered as a comprehensive way to extract as much information from the
magnetogram data as possible. Secondly, as we show, the two-stage model has significantly lower false
positive rates compared to the VGG-16 model alone: it reduces the false positives (≈48%) without
significantly reducing the true positives (≈12%). Finally, the ERT model provides a way to rank the
forecasting capability of various features (VGG-16 output probability, physics-based, topological).
In our ERT ranking, two features considerably outrank the others. The most highly ranked is the
VGG-16 output probability, indicating that the first-stage model is skillfully predictive of flares. The
second-most ranked feature is the R VALUE parameter — the total flux in the polarity inversion line
— a feature designed for discriminating flaring from non-flaring active regions (Schrijver et al. 2005).

In this work, we have explored numerous ways of extracting information from the photospheric
magnetic field for the purpose of predicting flares. As in previous studies, the overall skill of even our
best model does not significantly exceed the modified climatological forecasts developed by human
forecasters (Leka et al. 2019b). We conclude that the information contained in photospheric magnetic
field measurements alone is insufficient to predict SMEs with significantly more skill than a basic
climatological prediction. In future studies we plan to include chromospheric and coronal observations
from the SDO/Atmospheric Image Assembly (AIA) instrument for training machine learning solar
flare prediction models. This will be a challenging task since there are no standard AIA features
(analogous to the SHARPs features for HMI) with which to form feature vector inputs. Our focus
will therefore be on developing deep learning CNN models that can efficiently extract predictive
information from multi-wavelength time series of AIA images.
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APPENDIX

Configuration Optimal threshold TPR FPR Accuracy TSS HSS ROC AUC PR AUC

C1: [Br, Bφ, Bθ] 0.4 0.83 0.02 0.98 0.81 0.19 0.967 0.43

C2: Br 0.4 0.84 0.03 0.97 0.82 0.16 0.965 0.43

C3: Br stack w/LSTM 0.4 0.80 0.04 0.96 0.76 0.11 0.975 0.43

C4: Br stack as channels 0.4 0.79 0.02 0.98 0.76 0.18 0.974 0.46

Table 5. Performance of the VGG-16 model variants discussed in Section 3.

Random seed P N Architecture TP TN FP FN

Seed 100 286 23345 CNN-only 217 21977 1368 69

CNN+ERT 200 22662 683 86

Seed 200 207 23768 CNN-only 145 22343 1425 62

CNN+ERT 126 22979 789 81

Seed 300 137 22283 CNN-only 97 21214 1069 40

CNN+ERT 76 22064 219 61

Seed 400 347 22760 CNN-only 261 21525 1235 86

CNN+ERT 231 22015 745 116

Seed 500 228 22787 CNN-only 192 21117 1670 36

CNN+ERT 172 21942 845 56

Seed 600 156 24532 CNN-only 108 22628 1904 48

CNN+ERT 81 23496 1036 75

Seed 700 325 22187 CNN-only 251 20889 1298 74

CNN+ERT 234 21395 792 91

Seed 800 217 24007 CNN-only 151 22360 1647 66

CNN+ERT 139 22966 1041 78

Seed 900 207 22425 CNN-only 144 20765 1660 63

CNN+ERT 126 21697 728 81

Seed 1000 184 23509 CNN-only 148 21994 1515 36

CNN+ERT 146 22643 866 38

Table 6. Comparison results for the CNN-Only and CNN w/ ERT architectures
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